Complete Guide to Gemma 3n Video Input Processing (2025)
Master the art of video input processing with Gemma 3n’s advanced multimodal capabilities
🎯 Understanding Video Input in Gemma 3n
Gemma 3n’s video input capabilities represent a significant advancement in multimodal AI. The model can process video content, extract temporal and spatial information, and generate contextual responses based on visual understanding.
Key Features
- Temporal Understanding: Analyze video sequences over time
- Spatial Recognition: Identify objects, scenes, and actions
- Contextual Analysis: Understand relationships between visual elements
- Natural Language Generation: Generate descriptive and analytical responses
📦 Prerequisites and Setup
Required Dependencies
pip install torch torchvision transformers accelerate
pip install opencv-python moviepy pillow
Model Setup
from transformers import AutoProcessor, AutoModelForCausalLM
import torch
# Load Gemma 3n 4B model (supports video input)
model_name = "google/gemma-3n-4b"
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto"
)
🎬 Basic Video Input Processing
1. Loading and Preprocessing Video
import cv2
import numpy as np
from PIL import Image
def load_video_frames(video_path, max_frames=16):
"""Extract frames from video for processing"""
cap = cv2.VideoCapture(video_path)
frames = []
frame_count = 0
while cap.isOpened() and frame_count < max_frames:
ret, frame = cap.read()
if not ret:
break
# Convert BGR to RGB and resize
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb, (224, 224))
frame_pil = Image.fromarray(frame_resized)
frames.append(frame_pil)
frame_count += 1
cap.release()
return frames
# Example usage
video_frames = load_video_frames("sample_video.mp4", max_frames=16)
2. Video Analysis with Gemma 3n
def analyze_video(video_frames, prompt="Describe what you see in this video:"):
"""Analyze video content using Gemma 3n"""
# Prepare input
inputs = processor(
text=prompt,
images=video_frames,
return_tensors="pt"
)
# Generate response
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=200,
temperature=0.7,
do_sample=True
)
# Decode response
response = processor.decode(outputs[0], skip_special_tokens=True)
return response
# Example usage
description = analyze_video(video_frames, "What actions are happening in this video?")
print(description)
🔧 Advanced Video Processing Techniques
1. Frame Sampling Strategies
def extract_key_frames(video_path, sampling_rate=0.1):
"""Extract key frames using uniform sampling"""
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Calculate frame indices to extract
frame_indices = np.linspace(0, total_frames-1,
int(total_frames * sampling_rate),
dtype=int)
frames = []
for idx in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
ret, frame = cap.read()
if ret:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb, (224, 224))
frame_pil = Image.fromarray(frame_resized)
frames.append(frame_pil)
cap.release()
return frames
2. Temporal Analysis
def analyze_video_temporal(video_frames):
"""Analyze video with temporal understanding"""
temporal_prompts = [
"What happens at the beginning of this video?",
"What occurs in the middle of this video?",
"How does this video end?"
]
results = []
for prompt in temporal_prompts:
inputs = processor(
text=prompt,
images=video_frames,
return_tensors="pt"
)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=150,
temperature=0.7
)
response = processor.decode(outputs[0], skip_special_tokens=True)
results.append(response)
return results
🎨 Specialized Video Analysis Tasks
1. Action Recognition
def recognize_actions(video_frames):
"""Recognize and describe actions in video"""
action_prompts = [
"What actions are being performed in this video?",
"Describe the movement and activities you observe:",
"What is the main action happening here?"
]
results = []
for prompt in action_prompts:
inputs = processor(
text=prompt,
images=video_frames,
return_tensors="pt"
)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=200,
temperature=0.6
)
response = processor.decode(outputs[0], skip_special_tokens=True)
results.append(response)
return results
2. Object and Scene Analysis
def analyze_objects_and_scenes(video_frames):
"""Analyze objects and scenes in video"""
analysis_prompts = [
"What objects can you identify in this video?",
"Describe the scene and environment:",
"What is the setting or location of this video?",
"Are there any people or animals visible?"
]
results = {}
for prompt in analysis_prompts:
inputs = processor(
text=prompt,
images=video_frames,
return_tensors="pt"
)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=150,
temperature=0.7
)
response = processor.decode(outputs[0], skip_special_tokens=True)
results[prompt] = response
return results
🚀 Real-time Video Processing
Streaming Video Analysis
import threading
import queue
import time
class RealTimeVideoAnalyzer:
def __init__(self, model, processor, frame_buffer_size=8):
self.model = model
self.processor = processor
self.frame_buffer = queue.Queue(maxsize=frame_buffer_size)
self.analysis_results = queue.Queue()
self.running = False
def start_analysis(self, video_source=0):
"""Start real-time video analysis"""
self.running = True
# Start video capture thread
capture_thread = threading.Thread(
target=self._capture_frames,
args=(video_source,)
)
capture_thread.start()
# Start analysis thread
analysis_thread = threading.Thread(
target=self._analyze_frames
)
analysis_thread.start()
return capture_thread, analysis_thread
def _capture_frames(self, video_source):
"""Capture frames from video source"""
cap = cv2.VideoCapture(video_source)
while self.running:
ret, frame = cap.read()
if not ret:
break
# Process frame
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb, (224, 224))
frame_pil = Image.fromarray(frame_resized)
# Add to buffer
if not self.frame_buffer.full():
self.frame_buffer.put(frame_pil)
else:
# Remove oldest frame
try:
self.frame_buffer.get_nowait()
self.frame_buffer.put(frame_pil)
except queue.Empty:
pass
time.sleep(0.1) # 10 FPS
cap.release()
def _analyze_frames(self):
"""Analyze frames in buffer"""
while self.running:
if self.frame_buffer.qsize() >= 4:
# Get frames for analysis
frames = []
for _ in range(4):
try:
frame = self.frame_buffer.get_nowait()
frames.append(frame)
except queue.Empty:
break
if len(frames) >= 4:
# Analyze frames
inputs = self.processor(
text="What is happening in this video stream?",
images=frames,
return_tensors="pt"
)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_length=100,
temperature=0.7
)
response = self.processor.decode(
outputs[0],
skip_special_tokens=True
)
# Store result
self.analysis_results.put(response)
time.sleep(1.0) # Analyze every second
def get_latest_analysis(self):
"""Get the latest analysis result"""
try:
return self.analysis_results.get_nowait()
except queue.Empty:
return None
def stop(self):
"""Stop analysis"""
self.running = False
# Example usage
analyzer = RealTimeVideoAnalyzer(model, processor)
capture_thread, analysis_thread = analyzer.start_analysis()
# Monitor results
for _ in range(10):
result = analyzer.get_latest_analysis()
if result:
print(f"Real-time analysis: {result}")
time.sleep(2)
analyzer.stop()
🔍 Performance Optimization
Memory Management
def optimize_video_processing(video_frames, batch_size=4):
"""Process video frames in batches for memory efficiency"""
results = []
for i in range(0, len(video_frames), batch_size):
batch_frames = video_frames[i:i + batch_size]
# Process batch
inputs = processor(
text="Analyze this video segment:",
images=batch_frames,
return_tensors="pt"
)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=150,
temperature=0.7
)
response = processor.decode(outputs[0], skip_special_tokens=True)
results.append(response)
# Clear memory
del inputs, outputs
torch.cuda.empty_cache() if torch.cuda.is_available() else None
return results
🛠️ Troubleshooting Common Issues
1. Memory Issues
# Reduce frame resolution for memory-constrained systems
def load_video_frames_low_memory(video_path, max_frames=8, size=(112, 112)):
"""Load video frames with reduced memory usage"""
cap = cv2.VideoCapture(video_path)
frames = []
frame_count = 0
while cap.isOpened() and frame_count < max_frames:
ret, frame = cap.read()
if not ret:
break
# Use smaller frame size
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb, size)
frame_pil = Image.fromarray(frame_resized)
frames.append(frame_pil)
frame_count += 1
cap.release()
return frames
2. Processing Speed Issues
# Use frame skipping for faster processing
def load_video_frames_fast(video_path, skip_frames=2, max_frames=16):
"""Load video frames with frame skipping for speed"""
cap = cv2.VideoCapture(video_path)
frames = []
frame_count = 0
while cap.isOpened() and frame_count < max_frames:
ret, frame = cap.read()
if not ret:
break
# Skip frames for faster processing
if frame_count % (skip_frames + 1) == 0:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb, (224, 224))
frame_pil = Image.fromarray(frame_resized)
frames.append(frame_pil)
frame_count += 1
cap.release()
return frames
📊 Best Practices
1. Video Quality Considerations
- Resolution: Use 224x224 or 112x112 for optimal performance
- Frame Rate: Extract 8-16 frames for most analyses
- Format: MP4 or AVI formats work best
- Compression: Balance quality vs. file size
2. Analysis Strategies
- Key Frame Extraction: Use scene change detection for relevant frames
- Temporal Sampling: Uniform sampling works well for most cases
- Batch Processing: Process frames in batches for memory efficiency
3. Performance Optimization
- GPU Acceleration: Use CUDA when available
- Memory Management: Clear cache between batches
- Frame Skipping: Skip frames for faster processing
- Resolution Reduction: Use lower resolution for real-time processing
🚀 Next Steps
- Experiment with Different Video Types: Test with various video content
- Optimize for Your Use Case: Adjust parameters for your specific needs
- Implement Real-time Processing: Set up streaming video analysis
- Build Video Analysis Applications: Create custom video analysis tools
📚 Additional Resources
Ready to process video with Gemma 3n? Start with basic video loading and gradually explore advanced analysis techniques.
Need help? Check out our community forum for support and discussions.